#### XIV Школа – конференция молодых ученых «Проблемы физики твердого тела и высоких давлений» Сочи, 11-20 сентября 2015 г.

### СПЕКТРОСКОПИЧЕСКОЕ ИССЛЕДОВАНИЕ ФАЗОВЫХ ПЕРЕХОДОВ В <u>HoFe<sub>3</sub>(BO<sub>3</sub>)</u>



<u>Д.А. Ерофеев<sup>1,2</sup></u>, Е.П. Чукалина<sup>1</sup>, М.Н. Попова<sup>1</sup>

<sup>1</sup>Институт спектроскопии Российской Академии Наук, Троицк, Москва

<sup>2</sup>Московский Физико-Технический Институт, Долгопрудный



Редкоземельные ферробораты:  $RFe_3(BO_3)_4$ , R = (Y, La-Lu)

### <u>Мультиферроики</u>

Применение в *спинтронике*: •Энергонезависимость (М) •Быстродействие (Э)



<u>**R**</u> = Ho<sup>3+</sup>: 3 типа фазовых переходов:

- 1. <u>Структурный</u>, с понижением симметрии кристалла
- 2. <u>Антиферромагнитное</u> упорядочение
- 3. Спин-переориентационный фазовый переход

## Поэтапное изучение <u>HoFe<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub></u>:

- Регистрация спектров высокого разрешения в области *f-f* переходов в монокристалле HoFe<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub>
- Изучение их изменения при фазовых переходах
- Регистрация инфракрасного колебательного спектра поглощения НоFe<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub>

Исчерпывающее спектроскопическое

исследование фазовых переходов



Понимание природы магнитных

и <u>магнитоэлектрических</u> явлений





| HoFe <sub>3</sub> (BO <sub>3</sub> ) <sub>4</sub> [2] | T > T <sub>S</sub> = <b>366K</b> | T < T <sub>s</sub> = <b>366K</b> |
|-------------------------------------------------------|----------------------------------|----------------------------------|
| Пространственная<br>группа симметрии                  | R32                              | P3 <sub>1</sub> 21               |
| R <sup>3+</sup> : Точечная<br>группа симметрии        | D <sub>3</sub>                   | C <sub>2</sub>                   |

[1] J. Solid State Chemistry, 172, 438-455. (2003)
[2] ЖЭТΦ, Τ. 144, № 6 (12), С. 1174. (2013)

### Магнитные процессы в HoFe<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub>









Криостат замкнутого цикла CryoMech ST 403



Спектральная область: 500 — 12000 см<sup>-1</sup>

> Разрешение: до *0,1* см<sup>-1</sup>

Температурный диапазон: 1,7 – 423 К



Поляризационный Микроскоп Olympus SZX7



Интегральная интенсивность, отн.ед.





#### Антиферромагнитное упорядочение



#### Пропускание, отн.ед.



#### Спин-переориентационный фазовый переход





 $HoFe_3(BO_3)_4$ + 1% Er<sup>3+</sup>:



# Выводы:

• Впервые зарегистрированы спектры высокого разрешения (до 0.1 см<sup>-1</sup>) монокристаллов мультиферроика **HoFe<sub>3</sub>(BO<sub>3</sub>)**<sub>4</sub> в области *f-f* переходов в ионе **Ho<sup>3+</sup>**, в широком диапазоне температур (1.7 – 423 К);

• Зарегистрированы <u>два магнитных фазовых перехода</u>: магнитное упорядочение в легкоплоскостную структуру как <u>фазовый переход II рода</u> <u>при *T*<sub>N</sub> = 39 К</u>и спин-переориентационный от плоскости *ab* к оси *c* как <u>фазовый переход I рода при *T*<sub>SR</sub> = 4.7±0.2 К;</u>

 По изменению спектра в области внутренних колебаний ВО<sub>3</sub> групп зарегистрирован <u>структурный фазовый переход I рода, близкий к переходу II</u> <u>рода, при T<sub>c</sub> = 360 К;</u>

• Дано естественное объяснение расхождения температур структурного перехода: причиной является <u>вхождение примесей Ві</u>из флюса в кристалл и при его росте.

• Проведена предварительная <u>идентификация штарковских уровней</u> в мультиплетах <sup>5</sup>I<sub>7</sub> и <sup>5</sup>I<sub>6</sub>, что является предпосылкой к полному спектроскопическому исследованию соединения.