Аномальный эффект Холла в каркасном стекле Ho_{0.5}Lu_{0.5}B₁₂

<u>В.Н. Краснорусский</u>¹, А.В. Богач¹, В.В. Глушков^{1,2}, С.В. Демишев^{1,2}, Н.Ю. Шицевалова³, В.Б. Филипов³, А.Л. Хорошилов², С. Габани⁴, К. Флахбарт⁴, Н.Е. Случанко¹

¹Институт общей физики РАН, 119991, Вавилова, 38, Москва, Россия ²Московский Физико-Технический Институт, 141700, Институтский пер., 9, Долгопрудный, Московская область, Россия ³Ин-т Проблем Материаловедения НАНУ, 03680, Кржижановского, 3, Киев, Украина ⁴Институт Экспериментальной Физики САН, 04001, Ватсонова, 47, Кошице, Словакия

GPI RAS

Формирование каркасного стекла в RB₁₂

Электронная структура и поверхность Ферми для LuB12 и ZrB12

J.Teyssier et al., Phys. Rev. B 75 (2007) 134503

Бориды *R*B₁₂ обладают довольно сложной поверхностью Ферми (ПФ), состоящей из 3-х принципиальных частей:

<u>I часть</u> многосвязанная поверхность в направлении <111> (Г-L направление) и топологически похожа на ПФ Cu.

<u>II часть</u> формирует похожие на пирожки электронные поверхности с центром в точке X.

<u>III часть</u> состоит из малых электронных линз с центром в точке К.

A.Baranovskiy et al., Low Temp. Phys. 35, 565 (2009).

2

Некоторые физические свойства Ho0.5Lu0.5B12

Удельное холловское сопротивление $Ho_{0.5}Lu_{0.5}B_{12}$

Удельное холловское сопротивление Ho_{0.5}Lu_{0.5}B₁₂

Эффекты ОМС и ПМС в Ho_{0.5}Lu_{0.5}B₆

Sluchanko et al. PhysRevB 91 (2015) 235104

Выделение аномального эффекта Холла

Анализ аномального эффекта Холла

Анализ аномального эффекта Холла

10

Анализ аномального эффекта Холла

- В каркасном стекле Ho_{0.5}Lu_{0.5}B₁₂ некомпланарная спиновая структура в АФМ состоянии, приводит к появлению фазы Берри носителей и возникновению топологического АЭХ
- Магнитные моменты Но направлены по направлению <111>

